Lecture 9
Plan:

1) Finish
2) Preview
applications

Polyhedra Cont.
secall: Nonedundeut = Facets
\square inequath $a_{i}^{T} \leq b_{i} \xrightarrow{\text { redundent }}$ if P
unchared when it's renoved.

- $I=:=\left\{i: a_{i}^{\top} x=b_{i} \forall x \in P\right\}$ "equaliies"
- C..7.D $a^{\top} x<h .3$

"real inequalities"
egg.

$$
P=\left[\begin{array}{c}
x_{1}+x_{2} \leqslant 1 \\
-x_{1} \leqslant 0 \\
x: x_{2} \leqslant 0 \\
x_{3} \leqslant 0 \\
-x_{3} \leqslant 0
\end{array}\right] I=
$$

THEN:

Not facet
\Rightarrow redund. face $a_{i}^{\top} x=b_{i}$ for $i \in I_{2}$ not facet $\Rightarrow a_{i}^{\top} x \leqslant b_{i}$ is redundant.

(need $i \in I_{c}$, e.g. $x_{3} \geqslant 0, x_{3} \leqslant 0$ in example neither facets nor redundant.)

Facet \Rightarrow
non redund. F is facet of $P_{1} \Rightarrow$ $\exists i \epsilon I_{<}$st. F from $a_{i}^{\top} x=b_{i}$.

TAKE-HOME: in minimal description of P, weed

- lin-indep set of equalities ($I_{=}$)
- on inequality per facet ($I_{<}$).

Proof We only prove \Rightarrow.

- Suppose $a_{i}^{\tau} x \leq b_{i}$ rotredundant *
want to show corresp. tace ti tacet
- Weill do this by shovin

$$
\begin{aligned}
& \quad \begin{array}{l}
\operatorname{dim}(F) \geqslant \operatorname{dim}(P)-1 \\
\& \operatorname{dim}(F) \neq \operatorname{dim}(P) .
\end{array} \\
& \operatorname{dim}(F) \geqslant \operatorname{dim}(P)-1: \\
& \text { - } \Rightarrow \text { Is } \hat{x} \text { st. } \\
& \text { but }_{a_{i}^{T} \hat{x}>b_{i}}^{a_{i}^{T} \hat{x} \leq b_{i} \quad \forall j \neq i .}
\end{aligned}
$$

egg. $i=4$

- Let F_{i} be face $a_{i}^{\top} x=b i$.
- $\forall x \in P$, line segment $x \rightarrow x_{0}$ has unique

$$
x_{0} \in F_{i}
$$

egg. $i=4$

\Rightarrow any point $x \in P$ contained in

$$
\begin{gathered}
\operatorname{aff}\left(F_{i}, x_{0}\right)! \\
-P \subseteq \operatorname{aff}\left(F_{i}, x_{0}\right) \Rightarrow \\
\operatorname{dim}_{1}(P) \\
\leq \operatorname{dim}\left(F_{i}\right)+1
\end{gathered}
$$

$$
\operatorname{dim}(F) \neq \operatorname{dim}(P):
$$

- Recall it I_{2}.
\Rightarrow is point $x_{<} \in P$ with $a_{i}^{\top} x<b$ i.
- $x_{<}$cant bin of $\left(F_{i}\right)$.

Recall: Near vertex = Cone (polytope)
(N.C. Theorem)

Lat v_{0} vertex of P from valid inequality $c^{\top} x \leqslant m$.
Let ε be such that $c^{\top} v^{\prime} \leq m-\varepsilon$ for all other vertices V^{\prime}.

Then

$$
P_{0}=\left\{x \in P: c^{\top} x=m-\varepsilon\right\}
$$

is a polytope \& is bijection
$\left\{P_{0}^{\prime} ; \operatorname{dim} k\right.$ face $\} \longleftrightarrow$ r-1 1...k+l faces
lis ain.
containing $\left.v_{0}\right\}$
Corollary: Graph connected
Graph of vertices $\&$ edges of polyhedron P is always connected.
In particular: if v^{*} max. of $c^{\top} x$ over P, v_{0} vertex, $\exists v_{0} \rightarrow v^{*}$ path which doesn't decrease objective.

Proof of Corollary:

- Suppose V^{*} unique max of $C^{\top} X$ over P.
- Enough to glow that \forall vertices $V_{0} \neq P$, Hedge to vertex $v, w /$

$$
c^{T} v_{1}>c^{T} v_{0}
$$

(by finiteness of \# vertices).

- Let P_{0} be polytope from last theorem.

- Let x be intersection of P_{0} and segment joining V_{0}, V^{*}.

- note that $c^{\top} v_{0}<c^{\top} x$. ($c^{\top} y$ incr. aloy segment, $v_{0} \notin P_{0}$).
bIc Po polytope,

$$
P_{0}=\operatorname{conv}\left(\text { vertices of } P_{0}\right) \text {. }
$$

$\Rightarrow \exists$ vertex ω with

$$
c^{\top} v_{0}<c^{\top} x \leqslant c^{\top} w
$$

WHT? Simple but powerful principle:

$$
x=\sum_{\substack{\omega \\ \text { vertices } \\ \text { of } P_{0}}} \lambda_{\omega} \omega, \sum \lambda_{\omega}=1
$$

$\Rightarrow c^{\top} x=\sum \lambda_{\omega} c^{\top} \omega$ "weighted average"
\Rightarrow some $c^{\top} \omega \geqslant c^{\top} x$.

- \quad Unction ω is intersection
- Dy bic........ of edge e with P_{0}.

- e must bebouded (b/c c $c^{\top} y$ increases along e, but objective bounded on P).
- Thus ends at some vertex V_{1},

$$
C^{\top} V_{1}>C^{\top} V_{0}
$$

Proof of N.V.C
Recall: if vertex v_{0} given by then $c^{\top} x=M$,

$$
P_{0}=\left\{x \in p: c^{\top} x=m-\varepsilon\right\}
$$

for small ε.

Assume $\operatorname{rank} A=n$; else no vertices.
(1) Po bounded.

- Exercise: If Q unbounded polyhedron, $x \in Q$, Then Q contains say from x :

$$
\{x+\alpha y: \alpha \geqslant 0\}
$$

- Suppose P_{0} unbounded, Let $x_{0} \in P_{0}$.
$\Rightarrow P_{0}$ contains ray

$$
\left\{x_{0}+\alpha y: \alpha \geqslant 0\right\}
$$

for some y.

- as $P_{0} \subseteq x_{0}+c^{+}, y \in C^{\perp}$.
- use ray to construct another minimizer v contradicting uniqueness:

- By closedness,

$$
\left\{v_{0}+\alpha y: \alpha \geqslant 0\right\}
$$

but $c^{T} x$ constant along it. is
(2). The bijection:

$$
\begin{aligned}
& \text { face } F \rightarrow V_{0} \text { of P } \\
& \begin{aligned}
& F_{0}:=\left\{x: C^{\tau} x=m-\varepsilon\right\} \\
&=F \cap P_{0} .
\end{aligned}
\end{aligned}
$$

(a: Onto: every face Fo of P_{0} can be written this way for some F of P.

- Let F_{0} nonempty face of P_{0}.

$$
F_{0}=\left\{\begin{array}{l}
a_{i}^{\top} x=b_{i} \quad i \in I \\
c^{\top} x=m-\epsilon \\
a_{j}^{\top} x \leq b_{j} \quad j \in I
\end{array}\right.
$$

Let

$$
F_{0}= \begin{cases}a_{i}^{\top} x=b_{i} & i \in I \\ a_{j}^{\top} x \leqslant b_{j} & j \in I\end{cases}
$$

(remove middle equality)

- Fo is a face by facesthm, so just need to show $v_{0} \in F_{0}$.
- Recall that v_{0} was only vertex v with

$$
c^{\top} v \geqslant m-\epsilon
$$

- But $c^{\top} x$ bounded above on F \Rightarrow reaches max $\geqslant m-t$ at vertex v of F_{j} thus $V=V_{0}$.
(6) Dimensions
(will also imply one-to-one).
- want to show

$$
\operatorname{dim} F_{0}=\operatorname{dim} F-1
$$

- Enough to show

$$
\begin{aligned}
& \Rightarrow F \leq \operatorname{aff}\left(F_{0} \cup\left\{v_{0}\right\}\right) \\
& \Rightarrow \operatorname{dim} F_{0} \geq \operatorname{dim} F-1 . \\
& \left(\operatorname{dim} F_{0} \leq \operatorname{dim} F-1 \text { bc } F_{0}=F \cap \text { plane },\right. \\
& \left.F_{0} \neq F\right) .
\end{aligned}
$$

Cases: (1) $c^{\tau} x \leqslant m-\xi$, (2) $c^{\tau} x>m-\varepsilon$.

(1) If $c^{\tau} x \leq m-\epsilon$, segment $x \rightarrow v_{0}$ clearly hits F_{0}, thus $x \in$ $\operatorname{aff}\left(F_{0} \cup\left\{v_{0}\right\}\right)$.

(2) Else, x is in polyhedron

$$
F^{\prime}=F \cap\left\{x \mid c^{\tau} x \geqslant m-\epsilon\right\}
$$

- F^{\prime} is bounded (for same reason as P_{0}).
$\Rightarrow F^{\prime}$ convex hull of its vertices.
- vertices of F^{\prime} are all either
a) on $c^{\top} x=m-\varepsilon$ or
b) equal to V_{0}.
(b / c then are vertices v of F satisfying $c^{r} v \geqslant m-t$; v_{0} only such vertex).

$$
\begin{aligned}
\Rightarrow F^{\prime} & \subseteq \operatorname{conv}\left(F_{0} \cup\left\{v_{0}\right\}\right) \\
& \subseteq \operatorname{af} \in\left(F_{0} \cup\left\{v_{0}\right\}\right)
\end{aligned}
$$

