12:= 21 + 1 + 1 + "real inequalities"

 $\begin{array}{c} e.g. \\ & \begin{array}{c} y_1 + x_2 \leq 1 \\ & -X_1 \leq 0 \\ \\ x: & -X_2 \leq 0 \end{array} \right] I_{-X_3 \leq 0} I_{-X_3 \leq 0}$

want to show corresp. tace t; tacet.

$$dim(F) \ge dim(P) - 1$$

•
$$\star \implies \mathrm{Is} \stackrel{\checkmark}{\times} \stackrel{\mathrm{S.t.}}{\to}$$

× Laz Fy Xo

=) any point XEP contained in $aff(F_{i}, X_{o})!$ $P \in aff(F_{i}, Y_{o}) \Rightarrow dim(P)$ 0 z dim(Fi)+1

 $\dim(F) \neq \dim(P)$: · Recall it I 2 => is point x c EP with aix cbj. • X2 cant bein aff(Fi) Π Recall. Near vertex = Cone (polytope) (NNC. Theorem)

1/ for Vo vertex of P from valid inequality $C^{T} x \leq M$. Let ε be such that $\varepsilon v' \leq m - \varepsilon$ for all other vertices V'.

Then

 $P_o = \{ x \in P : c \mid x = M - E \}$ is a polytope & is bijection ¿Po's dim k faceo } -1 1. Ktl faces

7P's am. containing Vo Y Corollary: Graph connected Graph of vertices & edges of polyhedron P is always connected. In particular : if v* max. of cTx over P Vo vertex, I vo -> v* path which doesn't decrease objective.

Proof of Corollary: · Suppose V* unique max of CIX over P. • Enough to show that Y vertices Vo ZP, Jedge to vertex V, w/ $cTV, \Sigma CVO.$ (by finiteners of # vertices). No Z

· Let Po be polytope from last theorem · Let X be interjection of Po and segment joining Vo, V*.

C Suppose Po unternded, fet Xo E Po. => P. contains ray Exotay, a303 for some of. Po

• as Postot, yect. • use ray to construct another minimizer V Contradicting uniqueness: V₀ Fyclosedness,
 Evotay: a≥03

but CTX constant along it. S The bijection: (z) $face F \ni V_0 \text{ of } P$ \longrightarrow $F_0 := \{x : CTx = m-2\}$ $= F \cap P_0,$ conte writtenthisway for some FofP.

• fet Fo nonempty face of Po.

$$F_{0} = \begin{cases} a_{i}^{T} x = b_{i} & \text{if } I \\ c^{T} x = m - E \\ a_{j}^{T} x \leq b_{j} & \text{jf } I \end{cases}$$
fet

$$F_{0} = \begin{cases} a_{i}^{T} x = b_{i} & \text{if } I \\ a_{j}^{T} x \leq b_{j} & \text{jf } I \end{cases}$$
(nemove middle equality)
Fo is a face by faces thm,
So just need to show
 $V_{0} \in F_{0}$.

• Recall that vo was only vertex v with ctv >m-E. But cTx bounded above on F \Rightarrow reaches max \ge m-E at vertex V of F; thus V=Vo.

· Enough to show \Rightarrow F $\leq aff(F_0 \cup \{V_0\}).$ ⇒ lim Fo > dim F-1. (dimFo ≤ dimF-1 bc Fo=FAplane FaFF) Cases: 1 $CT \times \leq m - \epsilon$, 2 $CT \times > m - \epsilon$. Ć. Fo 1) If $c^T X \leq m - \epsilon$, Segment $X \rightarrow V_0$ clearly hits Fo, thus X E aff(FoU{vo}).

2 Else, x is in polyhedron $F' = f \cap \{x \mid C \mid x \ge m - \epsilon\}.$

F' is bounded (for same reason as Po).

=) { ' convex hull of its vertices.

 Vertice s of F'are all either a) on $C^T X = m - E$

b) equal to Vo. (b/c they are vortices v of F satisfying c² V≥m-E, Vo only such vertex). Fo S ⇒ F'⊆ conv(Fou{vo3). Saff(Foutus).